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Abstract

Long INterspersed Elements-1 (L1s) constitute >17% of the human genome and still actively transpose in it.
Characterizing L1 transposition across the genome is critical for understanding genome evolution and somatic muta-
tions. However, to date, L1 insertion and fixation patterns have not been studied comprehensively. To fill this gap, we
investigated three genome-wide data sets of L1s that integrated at different evolutionary times: 17,037 de novo L1s (from
an L1 insertion cell-line experiment conducted in-house), and 1,212 polymorphic and 1,205 human-specific L1s (from
public databases). We characterized 49 genomic features—proxying chromatin accessibility, transcriptional activity,
replication, recombination, etc.—in the 650 kb flanks of these elements. These features were contrasted between the
three L1 data sets and L1-free regions using state-of-the-art Functional Data Analysis statistical methods, which treat
high-resolution data as mathematical functions. Our results indicate that de novo, polymorphic, and human-specific L1s
are surrounded by different genomic features acting at specific locations and scales. This led to an integrative model of L1
transposition, according to which L1s preferentially integrate into open-chromatin regions enriched in non-B DNA
motifs, whereas they are fixed in regions largely free of purifying selection—depleted of genes and noncoding most
conserved elements. Intriguingly, our results suggest that L1 insertions modify local genomic landscape by extending CpG
methylation and increasing mononucleotide microsatellite density. Altogether, our findings substantially facilitate un-
derstanding of L1 integration and fixation preferences, pave the way for uncovering their role in aging and cancer, and
inform their use as mutagenesis tools in genetic studies.
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Introduction
More than 45% of the human genome consists of transpos-
able elements (TEs), including >17% occupied by Long
INterspersed Element type 1, abbreviated as LINE-1 or L1
(Singer 1982; Cordaux and Batzer 2009). L1’s youngest copies
are the only active LINE transposons in our genomes
(Penzkofer et al. 2017; Feusier et al. 2019). L1s facilitate activity
of Short INterspersed Elements (SINEs) (Goodier and
Kazazian 2008; Meyer et al. 2016; Scott and Devine 2017).
Moreover, the L1 transposition machinery can be utilized

by noncoding and messenger RNAs and thus contributes
to generating processed pseudogenes (Konkel et al. 2010;
Beck et al. 2011). Altogether, L1-related transposition is
thought to give rise to�69% of the modern human genome
(de Koning et al. 2011; Sotero-Caio et al. 2017). Therefore,
studying L1 transposition dynamics should substantially ad-
vance our understanding of the evolution of genome
structure.

L1 transposition follows a “copy-and-paste” mechanism
(Kazazian and Moran 1998; Elbarbary et al. 2016). Full-
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length human L1 elements are usually >6 kb long, yet the
majority of L1s in the genome have experienced 50 trunca-
tions, inversions, or point mutations within their open read-
ing frames, and thus became inactive (Ostertag and Kazazian
2001a; Beck et al. 2011). Recent advances in whole-genome
sequencing (WGS) have enabled detection of L1 elements
that are polymorphic among human populations and indi-
viduals (Ratcliffe et al. 2002; Konkel et al. 2007; Ewing and
Kazazian 2011), and an increase in the number of identified
human L1 elements has facilitated studies of L1 evolution and
transposition mechanisms (Moran et al. 1996; Kazazian and
Moran 1998; Ostertag and Kazazian 2001b; St. Laurent et al.
2010; Richardson et al. 2017). Meanwhile, WGS and transpo-
son capture sequencing in human and other model organ-
isms (e.g. mice) have revealed heritable L1 insertions in both
the germline and early embryogenesis, suggesting their con-
tribution to genomic diversification (Feusier et al. 2019).
Moreover, it has been reported that de novo insertions of
L1s and dysregulation of L1s (both polymorphic and fixed
ones) in the human genome can lead to a variety of diseases
including cancer (Goodier and Kazazian 2008; Belancio et al.
2009; Beck et al. 2011; Payer and Burns 2019) suggesting an
important impact of L1 transposition on human health.

Previous studies have investigated the chromosomal dis-
tribution of L1 elements with respect to several genomic
features. For instance, densities of fixed L1 elements of differ-
ent evolutionary ages were found to vary by chromosome,
and to be affected by local nucleotide composition and re-
combination rate (Graham and Boissinot 2006). It has also
been reported that younger human L1s are abundant in AT-
rich regions with low gene density (Boissinot 2004). Recent
studies of de novo L1 integrations in cultured human cells
have suggested a strong correlation between L1 insertion
preferences and DNA replication (Sultana et al. 2019),
whereas the distribution of recently inserted elements was
found to be influenced by chromatin state (Singer 1982;
Sultana et al. 2017, 2019). These findings imply that, whereas
L1 activities shape the structure of the human genome, the
genomic landscape may at least partially determine the dy-
namics of L1 transposition over the course of evolution
(Beauregard et al. 2008). In agreement with this notion, L1
transposition was found to be affected by a wide range of
molecular and cellular processes. For instance, such genes as
MORC2 and p53 can restrain L1 activity through selective
transcriptional silencing (Liu et al. 2018) and post-
translational regulation via the piRNA (Piwi-interacting
RNA) pathway (Wylie et al. 2016). However, to date, the
genome-wide dynamics of human L1 transposition has not
been studied within an evolutionary framework, through
which the insertion and fixation preferences of these ele-
ments can be elucidated.

In addition to providing information on evolutionary pro-
cesses in the genome, a detailed understanding of L1 trans-
positional activity and integration preferences can facilitate
the use of L1s as a mutagenesis tool in molecular genetic
studies. Indeed, L1 retrotransposition provides a powerful
platform for mutagenesis screens with successful applications
in mammalian systems—including mouse and human cells

(An et al. 2006). There are many advantages to using L1
retrotransposons as a mutagenesis tool; for instance, they
provide stable donor copies and enable RNA-level manipula-
tion (Ivics et al. 2009). Knowing what genomic landscape may
attract L1 insertions, one can engineer L1s to target-specific
locations and to avoid genomic regions prone to structural
rearrangements (Graham and Boissinot 2006).

With the development of multiple high-throughput exper-
imental approaches (e.g. ChIP-seq, DNA footprinting, and
bisulfite sequencing), genomic landscape features can be in-
vestigated at increasingly high resolution (Hesselberth et al.
2009; Krueger et al. 2012; Landt et al. 2012) and can provide
critical information for studying L1 integration and fixation
dynamics. In particular, genomic landscape measurements in
consecutive subregions can be treated as “curves” along each
chromosome. On one hand, this enables comparisons of
landscape features among different genomic regions, reveal-
ing not only the presence, but also the location and scale of
significant differences. On the other hand, this allows one to
take into account the ordered nature of the measurements,
hence gaining power in characterizing differences. We can
analyze genomic features as curves using Functional Data
Analysis (FDA) (Ramsay and Silverman 2007), a branch of
statistics specifically developed to study data described as
curves (mathematical functions), which was only recently
introduced into genomics research (Zhang et al. 2014;
Campos-S�anchez et al. 2016; Cremona et al. 2018, 2019;
Guiblet et al. 2018).

In this study, we applied FDA to the genome-wide analysis
of L1 transposition dynamics, considering three genome-wide
data sets of human L1s representing newly integrated, poly-
morphic, and human-specific L1s, together with 49 genomic
landscape features collated from other studies. To the best of
our knowledge, we performed the first genome-wide analysis
of L1 transposition dynamics in an evolutionary framework
and using FDA to leverage an extensive list of genomic land-
scape features at high resolution. We demonstrated that the
genomic distribution of human L1 elements is not random
and is strongly associated with the local genomic landscape.
Our analyses revealed potential mechanisms through which
local genomic features have influenced L1 transposition dy-
namics and, in turn, L1 transposition has shaped the genomic
landscape over the course of evolution.

Results

L1 Data Sets
To investigate the relationship between L1 distribution and
local genomic landscape in an evolutionary framework, we
considered three data sets comprising integrations of L1 ele-
ments at different evolutionary time points; namely, de novo,
polymorphic, and human-specific L1s (supplementary table
S1, Supplementary Material online). De novo L1s experienced
minimal selection. Human-specific L1s could have been sub-
ject to selection for millions of years. Polymorphic L1s expe-
rienced levels of selection somewhere between those of de
novo and human-specific L1s. Thus, studying de novo L1s
should inform integration preferences, contrasting
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distributions of human-specific versus de novo L1s should
highlight fixation preferences, and investigating polymorphic
L1s might provide additional insights on the interplay be-
tween integration and fixation.

For de novo L1s, we harvested L1s from an induced L1
insertion experiment conducted in the cultured human kid-
ney stem cell line HEK-293T (fig. 1 and supplementary fig. S1,
Supplementary Material online), which allows efficient vector
amplification and high levels of expression with transient
transfection (Rio et al. 1985; Lin et al. 2014). Positions of L1
insertions were captured by inverse PCR followed by Illumina
sequencing (see Materials and Methods section). By analyzing
sequencing data from this experiment, we identified 17,037
de novo L1 insertions. To the best of our knowledge, this is
one of the largest collections of de novo L1 insertions in
human cells. Next, we obtained 1,012 polymorphic L1s
from a cross-referenced study of human polymorphic L1s
(Ewing and Kazazian 2011)—the ones present in some but
not all human genomes examined. The polymorphic L1 data
set we have chosen for our analysis (Ewing and Kazazian
2011) is well-balanced in terms of sample size (1,012 poly-
morphic L1s) and population representation (310 individuals
from 13 populations), while also reflecting insertion rates and
allele frequency spectra similar to those in other studies of
polymorphic L1s (Stewart et al. 2011; Yu et al. 2017) (supple-
mentary table S5, Supplementary Material online). Finally, we
obtained 1,205 human-specific L1HSs using the

RepeatMasker (Smit et al. 2015) track of GRCh37/hg19
from the UCSC Genome Browser (Karolchik et al. 2004)
and performing the following filtering: we conservatively se-
lected only those L1HSs that were absent from the genomes
of nonhuman great apes (Boissinot et al. 2000; Ovchinnikov
et al. 2002; Philippe et al. 2016) and were not annotated as
polymorphic in (Ewing and Kazazian 2011).

L1 Elements Are Not Randomly Distributed
To assess whether L1 elements are randomly distributed
across the genome, we analyzed their positions and the dis-
tances between subsequent L1s within and between our
three data sets. Karyotype plots (supplementary fig. S2,
Supplementary Material online) and chromosome-specific el-
ement densities (supplementary fig. S3, Supplementary
Material online) did not suggest any obvious enrichment or
depletion of de novo, polymorphic, or human-specific L1s on
specific chromosomes, in agreement with previous studies
(Sultana et al. 2019). However, within each of the three L1
data sets considered, the distribution of distances between L1
elements was far from random (fig. 2A and supplementary fig.
S4, Supplementary Material online). In particular, L1 elements
from the same data set were closer to each other compared
with random expectation (P¼ 10�16 for de novo L1s,
P¼ 1.5� 10�5 for polymorphic L1s, and P¼ 9.7� 10�11

for human-specific L1s, Kolmogorov–Smirnov test; see
Materials and Methods section). Furthermore, the analysis

FIG. 1. Identification of in vivo de novo L1 insertions by inverse PCR. Vectors containing both a synthetic human L1 element (full-length synthetic
ORFeus-Hs, see Materials and Methods) and GFP were transfected into cultured cells. The vectors were marked by two restriction enzyme sites
(MspI and TaqI) and 14 different barcodes of four to six nucleotides. Although the successful de novo L1 integration events are captured by GFP
expression, the genomic DNA along with a stretch of the L1 element (its poly-A tail end) is obtained by restriction enzyme digestion. The positions
of L1 insertions are acquired by inverse PCR and paired-end Illumina sequencing.
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of distances between L1s from different data sets (fig. 2B)
revealed distinct patterns for de novo, polymorphic, and
human-specific L1s. In particular, de novo L1s were generally
located further than expected from the other two types of L1s
(fig. 2B and supplementary fig. S5, Supplementary Material
online). Notably, the distribution of de novo L1 insertions
appeared nonrandom also when considering de novo L1
data sets generated in other recent studies (Flasch et al.
2019; Sultana et al. 2019) (supplementary table S6 and fig.
S16, Supplementary Material online).

Genomic Landscape Features Analyzed
To understand the determinants of the (nonrandom) distri-
butions observed for L1s along the genome, we quantitated
the genomic landscape surrounding L1 elements and studied
its association with L1 integration and fixation. Specifically,
using publicly available sources (e.g. ENCODE [ENCODE
Project Consortium 2012] and UCSC Genome Browser
[Karolchik et al. 2004]) and results from previous studies
(see Materials and Methods section), we collected data on
49 quantitative genomic features that may influence L1 inte-
gration and fixation dynamics (table 1 and supplementary
table S2, Supplementary Material online). These included fea-
tures related to chromatin structure, transcription regulation,
DNA methylation, nucleotide composition, non-B DNA
structures, non-L1 transposons, gene expression in human
embryonic stem cells (hESCs), replication, recombination,
and selection. In general, we strived to be consistent regarding
the sources of genomic features, which was an important
component in our study design. Specifically, 22 features (e.g.
GC content, exon coverage, and most conserved elements)
were not cell-line specific, and we extracted most of the other

features (e.g. histone modifications and DNA methylation)
from hESCs. Since our de novo L1 data set was generated
in HEK-293T cells, we also examined epigenetic features avail-
able for hg19 in the HEK-293T cell line (or in HEK-293 when
not available in HEK-293T), and compared them with the
same features generated in hESC lines. The results indicated
substantial genome-wide correlation between the features
from HEK-293T (or HEK-293) and hESC (supplementary table
S4 and fig. S15, Supplementary Material online). Therefore,
the genomic feature data sets employed in our study are
generally representative of the genomic landscape of HEK-
293T cells.

We constructed 100-kb flanking genomic regions sur-
rounding each L1 insertion (650 kb), as well as 10,037 100-
kb control regions with minimal L1 element coverage (<7%;
fig. 3; see Materials and Methods section). We excluded
regions overlapping with unsequenced gaps (Kent et al.
2002) and repeats with artifactual ChIP-seq or DNase-seq
signals (supplementary table S3, Supplementary Material on-
line; Materials and Methods section), as well as sex chromo-
somes, given the lack of genomic feature data available for
them. Forty-four features were measured at 1-kb resolution
(“high-resolution features”), providing 100 measurements per
L1-flanking (or control) region. Five additional features—telo-
mere hexamers, distance to the telomere, distance to the
centromere, replication timing profile, and sex-averaged re-
combination rate—were measured at 100-kb resolution
(“low-resolution features”), providing a single measurement
per L1-flanking (or control) region. Features were extracted as
coverage (percentage of the window covered by a feature),
average value weighted by window coverage (“weighted
average”), count, or average signal, per 1-kb window (or per
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100-kb in the case of low-resolution features) in each L1-
flanking (or control) region. Then, for each feature, values
were averaged across all L1 elements belonging to the same
data set, producing 100 mean values and thus mean curves
(or a single mean value in the case of low-resolution features).
Three high-resolution features were highly correlated
(Spearman’s correlation coefficient >0.8) with other features
(supplementary fig. S6, Supplementary Material online) and
were excluded from subsequent analyses. Thus, a total of 41
high-resolution and five low-resolution features were
retained.

Functional Data Analysis
To capture multiscale (up to 100 kb) differences in local ge-
nomic landscape features among L1s from the three data sets
and control regions, we utilized four FDA approaches. First, to
identify differences in low-resolution features between L1s
from the three data sets and control regions, we used the
univariate version of Interval-Wise Testing for omics data
(IWTomics) (Cremona et al. 2018). Considering the low-
resolution features one at a time, the test focuses on a
mean value for every 100-kb region and evaluates the differ-
ence in means between two sets of L1-flanks, or one set of L1-
flanks and a set of controls. We compared low-resolution
features between de novo L1s and controls; human-specific
L1s and de novo L1s; human-specific L1s and controls; poly-
morphic L1s and controls; polymorphic L1s and de novo L1s;
and finally, human-specific L1s and polymorphic L1s (a total
of six comparisons). Second, to investigate differences in high-
resolution features, we used IWTomics in its standard (i.e.
functional) version, running the same six comparisons for
each feature (again one at a time). Standard IWTomics allows
one to contrast two sets of curves composed of contiguous
values. In our case, we tested for differences between curves
composed of 100 mean values (one per 1-kb window) for

each genomic feature, for the three L1 data set and the con-
trols (the same six comparisons). Third, to quantify the im-
pact of each specific feature (independent of the effects of
other features) on distributions of L1s at different evolution-
ary time points, we ran single Functional Logistic Regressions
(sFLRs) (Ramsay and Silverman 2007; Febrero Bande and
Oviedo de la Fuente 2012), using the low- and high-
resolution features that were significant according to
IWTomics test and the same six comparisons (fig. 3). The
discriminatory strength of each feature was quantified with
pseudo-R2s from these sFLRs. Fourth, to quantify joint effects
of multiple features, many of which can interact and are
correlated according to our clustering analysis (supplemen-
tary fig. S6, Supplementary Material online), we built multiple
Functional Logistic Regressions (mFLRs), again using the same
genomic landscape feature data and the same six compari-
sons. mFLRs take into account multiple features at a time. For
each pairwise comparison of L1 flanks and controls, we iden-
tified a subset of relevant features among the (low- and high-
resolution) ones that were significant according to IWTomics,
using a functional variable selection method based on group
lasso (Meier et al. 2008; Matsui 2014), and then ran the
corresponding mFLR with this subset. The mFLR provided
quantification of the total impact (total deviance explained
by the selected features taken together), as well as the impact
of each individual feature (Relative Contribution to the
Deviance Explained, or RCDE) when considered with others
(table 1 and supplementary table S2, Supplementary Material
online). Notably, due to the functional (i.e. curve) nature of
the data, neither sFLR nor mFLR provides a sign for the effect
of each feature on the differences between L1 flanks and/or
controls (effect estimates are themselves curves). However,
this information can be retrieved from the IWTomics analysis.

Here, we present results (for all four FDA approaches) from
comparisons of de novo L1 flanks versus controls (fig. 4A and

FIG. 3. FDA workflow. Illustration of the FDA workflow used in the study. The 100-kb L1 regions were constructed taking 50-kb in each direction of
the insertion sites, and the control regions were constructed as 100-kb nonoverlapping intervals with low coverage (<7%) of L1s. High-resolution
genomic features were measured within each 1-kb window of the 100-kb regions, and treated as functional data (i.e. curves) for FDAs. Curves in
different groups (different types of L1s, or each L1 type vs. controls) were then compared using IWTomics and FLR. The control regions in this study
contain less than 7% coverage by all annotated L1 elements.
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FIG. 4. Summary of IWTomics results for individual high-resolution features. (A) De novo L1 flanking regions versus control regions. (B) Human-
specific L1 versus de novo L1 flanking regions. The X-axis represents the position analyzed within the 100-kb flanking regions of L1 elements (or
100-kb control regions); each unit is a 1-kb window. The black vertical line across the center marks the insertion site. Each row represents one
genomic feature and reports the adjusted P value curve on a log10 scale. White: nonsignificant difference (P value> 0.05). Red: significant
difference, with overrepresentation of the feature. Blue: significant difference, with underrepresentation of the feature. The selected scale
thresholds corresponding to the adjusted P value curves are noted on the left (column “Threshold”). The control regions contain less than 7%
coverage by all annotated L1 elements.
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supplementary fig. S7, Supplementary Material online; table 1)
and of human-specific versus de novo L1 flanks (fig. 4B and
supplementary fig. S7, Supplementary Material online; ta-
ble 1). They should reflect, respectively, L1 integration and
selection preferences with respect to different genomic fea-
tures—and are thus particularly informative. Results for the
other four comparisons are included in the Supplement (sup-
plementary figs. S8–S10 and table S2, Supplementary Material
online).

De Novo L1 Insertion Landscape
To investigate insertion preferences, we compared genomic
features in the flanks of de novo L1s versus control regions.
The univariate IWTomics analysis (fig. 5) contrasting low-
resolution features suggested that de novo L1 insertions are
significantly and positively associated with early replication
timing (P¼ 0.0001; fig. 5C), and significantly and negatively
associated with telomere hexamers (P¼ 0.0001; fig. 5E).

The standard (functional) IWTomics analysis revealed 17
high-resolution genomic features that were significantly over-
represented at de novo L1 flanks, suggesting their positive
association with L1 insertions (fig. 4A and supplementary
fig. S7A and B, Supplementary Material online). Among these
features, 13 had highly localized signals centered at the L1
integration site. These included seven features with particu-
larly strong overrepresentation at the L1 integration site:
DNase hypersensitive sites (DHS), H3K4me2, H3K4me3, and
H3K9ac histone marks, sperm hypomethylation, CpG islands,
and G-quadruplexes. In contrast, Alu density was significantly
overrepresented across almost the entire 100-kb flanks of de
novo L1s (fig. 4A). In addition, IWTomics identified 12 high-
resolution features with underrepresented signals at de novo
L1 flanks, suggestive of their negative influence on L1 insertion
preferences (fig. 4A). Among them, H3K36me3 histone marks
and CpG methylation had underrepresented signals localized
at the L1 integration site, whereas most conserved elements,
introns, MIRs, and L1 target sites were significantly underrep-
resented across the entire de novo L1 flanks analyzed.
Interestingly, H3K4me1 histone marks were significantly

underrepresented starting at 62 kb from L1 integration sites,
but not closer to them (fig. 4A).

The sFLR models estimated the strength of each genomic
feature (not considering other features) in explaining de novo
L1 integration preferences (table 1). Most conserved ele-
ments, MIRs, and telomere hexamer were the strongest pre-
dictors, each explaining deviance above 5% (pseudo-R2 ¼
8.74%, pseudo-R2 ¼ 6.56%, and pseudo-R2 ¼ 9.96% respec-
tively). Other strong predictors were H3K4me1 histone
marks, L1 target sites, and L2 and L3 (pseudo-R2 ¼ 4.20%,
pseudo-R2 ¼ 4.43%, and pseudo-R2 ¼ 4.94%, respectively).

The mFLR model comparing de novo L1 flanks with con-
trols selected 18 genomic features (table 1). Taken together,
these features explained 31.97% of the total deviance. Based
on their relative contributions (here evaluated in the context
of the mFLR), several features had a particularly strong effect
(RCDE> 5%) on L1 integration preferences (table 1), includ-
ing L1 target sites (RCDE¼ 16.2%), GC content
(RCDE¼ 14.0%), and DHS (RCDE¼ 5.03%).

L1 Fixation Landscape
To investigate fixation preferences, we compared the distri-
bution of genomic features in the flanks of human-specific
versus de novo L1s. The univariate IWTomics analysis con-
trasting low-resolution features (fig. 5) suggested that L1 fix-
ation is significantly and negatively associated with early
replication timing (P¼ 0.0001), telomere hexamers
(P¼ 0.0001), and distance to centromere (P¼ 0.0245).

The standard (functional) IWTomics (fig. 4B) identified six
high-resolution features that were significantly overrepre-
sented at human-specific L1 flanks versus those of de novo
L1s. These included three features that were overrepresented
over most of the 100-kb flanks analyzed—H3K9me3 histone
marks, A-phased repeats, and L1 target motifs; two features
that had localized overrepresentation at the L1 integration
site—CpG methylation (stronger effect) and mirror repeats
(weaker effect); and LTR elements that displayed a “patchy”
overrepresentation. IWTomics also identified as many as 27
features that were underrepresented at human-specific L1-

FIG. 5. Summary of IWTomics results for individual low-resolution features. (A) Distance to the telomere. (B) Distance to the centromere. (C)
Replication timing. (D) Sex-averaged recombination rate. (E) Count of telomere hexamers. Each panel presents the boxplots of the feature in the
flanking regions of de novo and human-specific L1s and in control regions. Black dot: mean; bold horizontal line: median; box limits: 25th and 75th
percentiles (whiskers and outliers not shown). The P values of pairwise IWTomics tests are noted at the bottom; significant ones (P value< 0.05)
are in bold. An extended summary comprising also the flanking regions of polymorphic L1s is provided in supplementary figure S9, Supplementary
Material online. The control regions contain less than 7% coverage by all annotated L1 elements.
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flanks versus those of de novo L1s (fig. 4B), suggesting that the
regions might undergo selection against L1 fixation, and thus
lack fixed L1 elements. Although most of them were under-
represented over the entire 100-kb flank length, H2AZF his-
tone marks, sperm hypomethylation, and sex-averaged
recombination hotspots were underrepresented only in the
vicinity of the L1 integration site. Interestingly, mononucleo-
tide microsatellites were enriched close to the integration site
but underrepresented along the remainder of the flanks
(fig. 4B), suggesting distinct associations of this feature at dif-
ferent scales.

Also here, the sFLR models allowed us to evaluate the
strength of each genomic feature in explaining de novo L1
fixation preferences. Features such as DHS, GC content, and
H3K9ac and H3K4me2 histone marks had strong effects, each
explaining more than 15% of the deviance (table 1). The next
tier of predictors each explained 10–15% of deviance and
included CpG islands, CTCF, H3K27ac, H3K4me1 and
H3K4me3 histone marks, Alus, replication origins, replication
timing profile, and 5hMC methylation. Several other predic-
tors each explained 5–10% of deviance. These included
H3K4me1, H3K27me3 and H3K36me3 histone marks, G-
quadruplexes, A-phased repeats, exons, and RNA Pol II.

The mFLR model comparing human-specific and de novo
L1 flanks selected nine predictors and explained 26.97% of the
deviance (table 1). Among the strongest predictors (with
RCDE >2%) were Alus (RCDE¼ 5.44%), H3K9me3
(RCDE¼ 4.46%) and H3K3me1 (RCDE¼ 2.64%) histone
marks, exons (RCDE¼ 2.77%), CpG islands (RCDE¼ 2.75%),
and sperm hypomethylation (RCDE¼ 2.12%).

Discussion
Our analysis of 49 genomic landscape with FDA suggested
that de novo, polymorphic, and human-specific L1s in the
human genome are characterized by unique genomic land-
scapes, with different features exhibiting associations at spe-
cific locations and scales. In general, de novo L1 integrations
tend to occur in regions with open chromatin structure, ele-
vated transcriptional activities, and high GC content (fig. 4A).
In contrast, after accounting for their integration preferences,
human-specific L1s tend to concentrate in regions with rela-
tively low exon content, enriched transcriptional repression
marks and conserved elements (fig. 4B). The genomic land-
scape for polymorphic L1s is generally similar to that of
human-specific L1s, yet their comparison with control sug-
gests less significant, weaker associations (supplementary fig.
S8A and table S2, Supplementary Material online). This is con-
sistent with our results showing that, in the genome, polymor-
phic L1s are located closer to human-specific than de novo L1s
(fig. 2). Below we discuss the results from our analyses, and
relate the L1 transposition dynamics with different biological
processes represented by genomic landscape features.

Biological Processes and Features Associated with L1
Integration and Fixation
Chromatin Structure
Our results suggest that L1 integration and fixation are asso-
ciated with open and condensed chromatin structure,

respectively. Three chromatin structure features were consid-
ered in our analysis: 1) DHSs, which are open chromatin
regions accessible to trans-factors and other regulatory ele-
ments (Wallrath et al. 1994; Tsompana and Buck 2014); 2)
RNA Pol II-binding sites, which are positively correlated with
open chromatin structure and gene expression (Barski et al.
2007; Kines and Belancio 2012; Sun et al. 2015); and 3) CTCF
motifs, which facilitate interactions between transcription
regulatory sequences and are hypothesized to facilitate
boundaries between topologically associated domains
(TADs) (Kim et al. 2007; Schmidt et al. 2012; Ong and
Corces 2014; Ghirlando and Felsenfeld 2016). We found
that DHS and RNA Pol II sites were enriched at integration
sites of de novo L1s (fig. 4A and supplementary fig. S7A,
Supplementary Material online), with relatively weak signals
identified in sFLRs, but stronger signals in the mFLR (table 1;
CTCF was not significant in any of our analyses). Thus, chro-
matin structure features may play an important role in L1
integration, even when considered in the context of other
genomic features. In contrast, DHS, RNA Pol II, and CTCF sites
were underrepresented over the whole 100 kb surrounding
L1s in the comparison of human-specific versus de novo
elements (fig. 4B). These effects were strong in sFLRs (all three
predictors had pseudo-R2 above 5%), but weaker in the mFLR
(only DHSs were selected; table 1), suggesting that effects of
chromatin features might be partially masked by other fea-
tures included in this model. We hypothesize that open chro-
matin structure can provide better accessibility for the L1
integration machinery, in line with other studies (Cost and
Boeke 1998; Sultana et al. 2019). In contrast, L1 elements that
inserted into genome regions with condensed chromatin
structure are more likely to become fixed, likely due to the
lack of regulatory units and lower transcription output in
these regions of the genome (ENCODE Project Consortium
2012; Ward and Kellis 2012).

Transcriptional Regulation and Gene Expression
Our investigation of 11 epigenetic marks from ENCODE
(ENCODE Project Consortium 2012) and gene expression
profiles in hESCs (gene expression) (Karolchik et al. 2004)
indicated a strong correlation between transcriptional regu-
lation and L1 transposition dynamics. Epigenetic marks of
active transcription landscape (Zhou et al. 2011; EpiGenie
Epigenetics Background, Tools and Database 2020)—
H3K4me2 (active promoters), H3K9ac (transcription activa-
tion; transition between transcription initiation and elonga-
tion) (Gates et al. 2017), and H3K4me3 (transcriptional
elongation)—were all overrepresented specifically at the in-
sertion sites of de novo L1s (fig. 4A and supplementary fig.
S7B, Supplementary Material online). The associations of
these features with L1 integration were confirmed by their
significance in both sFLR and mFLR models (except for
H3K4me2, which was not selected in the mFLR). This suggests
a localized positive effect (at the scale of several kilobases) of
active transcriptional activities on L1 insertion.

In contrast, a comparison of the landscape between
human-specific and de novo L1s revealed significantly
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decreased hESC gene expression levels, as well as underrep-
resented histone marks of active transcription (H3K4me2,
H3K9ac, H3K4me3, K79me2), elevated transcription activities
(H3K27ac, H3K20me1, H3K4me1), and open chromatin
(H3K36me3) over the whole 100-kb L1 flanking region
(fig. 4B). Moreover, the transcription repression mark
H3K9me3 was significantly overrepresented over most of
the 100-kb region, and this overrepresentation was particu-
larly strong within 68 kb from L1 insertion site (fig. 4B and
supplementary fig. S7C, Supplementary Material online).
However, the transcription shutdown mark H3K27me3,
which is also linked to high-CpG promoters (Zhou et al.
2011) due to “bivalent domains", was underrepresented
over the whole 100-kb region. The heterochromatin mark
H2AFZ (Rangasamy et al. 2004; Nishida et al. 2005) was un-
derrepresented in the immediate vicinity of integration sites
comparing human-specific versus de novo L1s. sFLR models
indicated particularly strong effects of hESC gene expression
and of active transcription marks, but few histone marks were
selected in the mFLR model, highlighting their interdepen-
dencies with other genomic features.

In summary, our results suggest that de novo L1 insertions
are facilitated by active transcription marks, whereas human-
specific L1s are fixed in nonheterochromatic regions—where
transcription is inactive or repressed and levels of gene ex-
pression are low, suggesting a potentially strict regulation of
fixed L1s (Philippe et al. 2016). Moreover, epigenetic marks act
at larger scales on L1 fixation preferences (e.g. 100 kb) and at
smaller scales on L1 insertion preferences (e.g. 1–2 kb), argu-
ing for different molecular and evolutionary mechanisms.

DNA Methylation
Our analysis revealed significant but contrasting effects of
DNA methylation on L1 insertion and fixation. Five DNA
methylation features were analyzed: 1) sperm hypomethyla-
tion (at CpG sites), which reflects genomic regions with low
methylation levels in sperm (Molaro et al. 2011); 2) CpG
methylation (in H1-hESC), which silences gene expression
(Weber et al. 2007; Lister et al. 2009; Straussman et al. 2009)
and limits TE transcription thus controlling their expansion in
the genome (Rodriguez et al. 2008; Oliver and Greene 2009);
3) 5-hMc methylation, the first oxidative product in the active
demethylation of 5-methylcytosine, which is preferentially
established at CpG dinucleotides (Szulwach, Li, Li, Song,
Wu, et al. 2011; Branco et al. 2012) and silences gene expres-
sion (Szulwach, Li, Li, Song, Han, et al. 2011; Mooijman et al.
2016); 4 and 5) CHH and CHG methylation, which is enriched
in exons of highly expressed genes (Lister et al. 2009; He and
Ecker 2015). In the immediate vicinity (61 kb) of de novo L1
insertions, CpG methylation was depleted, whereas sperm
hypomethylation was enriched (fig. 4A); sFLRs showed a
weak effect of CpG methylation, and stronger effect of sperm
hypomethylation, which was also selected in the mFLR (ta-
ble 1). In contrast, after subtracting the effects of de novo
insertions, in the immediate vicinity of fixed L1s CpG meth-
ylation was enriched and sperm hypomethylation was de-
pleted (fig. 4B); sperm hypomethylation had again a strong

effect according to sFLRs and was selected in the mFLR (ta-
ble 1). L1 fixation preferences were also associated with un-
derrepresented 5-hMc and CHG methylation across the
whole 100-kb flanking region analyzed (fig. 4B); these two
features showed strong and weak effects, respectively, in
sFLRs, but were not selected in the mFLR (table 1).

We hypothesize that genomic regions with low CpG meth-
ylation (and high hypomethylation) have elevated transcrip-
tion, and thus are more accessible to the L1 transposition
machinery. Besides, the underrepresented CpG methylation
signals both upstream and downstream of the L1 insertion site
may act as barriers to prevent the expansion of L1s. In agree-
ment with this, hypomethylation was associated with young
and active L1 subfamilies in previous studies (Khan et al. 2005;
Molaro et al. 2011). Regarding fixation preferences, our results
point towards a paucity of fixed L1s in regions with actively
expressed genes (we observe increased CpG methylation and
decreased sperm hypomethylation). Moreover, L1s are usually
not fixed in regions with highly expressed genes, explaining the
negative association with CHG methylation. Increased CpG
methylation near fixed L1s might also limit their own tran-
scriptional activity (Zemach et al. 2010; Huang et al. 2017).

Non-B DNA Motifs and Microsatellites
Based on our results, non-B DNA motifs and microsatellites
have significant associations with the insertion and fixation
preferences of L1s. Specifically, we examined six types of non-
B DNA: G-quadruplexes, A-phased repeats, direct repeats,
inverted repeats, mirror repeats, and Z-DNA motifs—all po-
tentially altering the DNA structure relative to the most com-
mon B form (Zhao et al. 2010; Cer et al. 2013; Sahakyan et al.
2017). We also examined coverage of mononucleotide micro-
satellites and combined coverage of di-, tri-, and tetranucleo-
tide microsatellites, many of which also form non-B DNA
(Guiblet et al. 2018). We found that G-quadruplexes, mirror
repeats and mononucleotide microsatellites were enriched in
the immediate vicinity of L1 insertion sites (fig. 4A); however,
only G-quadruplexes were selected by the mFLR (table 1). In
the comparison of human-specific versus de novo L1s flanks,
G-quadruplexes were underrepresented, and A-phased
repeats were overrepresented, over the whole 100-kb region,
and mononucleotide microsatellites were enriched at the fix-
ation site but underrepresented away from it (fig. 4B). The
three features were not selected in the mFLR (table 1). G-
quadruplexes, mirror repeats, and mononucleotide microsa-
tellites might attract new L1 integrations by inducing DNA
stability (Li et al. 2002; Kejnovsk�y et al. 2013) and/or by chang-
ing chromatin structure (Li et al. 2002; Bochman et al. 2012;
Lexa et al. 2014; Hou et al. 2019). The mononucleotide micro-
satellites enrichment observed in the immediate vicinity of L1
integration sites persisted for fixed elements. The depletion of
mononucleotide microsatellites observed across the entire
flanks of fixed L1s, which are enriched at poly-A tails of retro-
transposed genes and TEs, could reflect gene scarcity in the
broader vicinity of fixed elements. Underrepresentation of G-
quadruplexes and overrepresentation of adenine-rich A-
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phased repeats (Cer et al. 2011) might reflect the overall low
GC content of the flanks of fixed L1s.

Nucleotide Composition and L1 Target Motifs
We found that nucleotide composition (i.e. GC content) and
L1 target motifs exhibit major associations with L1 insertion
and fixation preferences. Specifically, GC content was elevated
in the immediate vicinity of de novo L1 insertion sites (fig. 4A)
and was a strong predictor in both sFLR and mFLR comparing
de novo L1 flanks with controls (table 1). In contrast, GC
content was globally lower in the flanks of human-specific
L1s compared with de novo L1s (fig. 4B); also here, it was a
strong predictor in both sFLR and mFLR (table 1). These
results are in agreement with previous findings that fixed L1
elements are usually found in AT-rich regions of the genome
(Lander et al. 2001; Medstrand et al. 2002; Kvikstad and
Makova 2010). We also ruled out the potential experimental
bias from the two restriction enzymes MspI and TaqI used for
the de novo L1 insertion assay, by analyzing the genome-wide
distance distribution of MspI and TaqI sites (supplementary
fig. S18, Supplementary Material online) as well as comparing
their enrichment against different genomic features, including
GC content (supplementary note S1, Supplementary Material
online). L1 target motifs (TTAAAA, TTAAGA, TTAGAA,
TTGAAA, TTAAAG, CTAAAA, and TCAAAA) (Feng et al.
1996; Jurka 1997; Zhao et al. 2019) were under- and overrep-
resented in the 100-kb regions surrounding de novo and fixed
L1 elements, respectively; this feature effect was strong in
both sFLRs, but was selected only in the de novo versus con-
trol mFLR.

The underrepresentation of L1 target motifs in the flanks
of de novo L1s is at first sight counterintuitive. However,
because its signal extends over the whole 100-kb flanking
region, it might reflect the overall AT-richness of L1 target
motifs, as de novo L1s prefer integrating into GC-rich regions
abounding in transcribed genes. Specifically, we observed a
depletion of L1 target sites in the whole 100-kb flanking
regions of de novo L1s (fig. 4A), and not at smaller resolution.
Thus, depletion may be largely driven by the resolution
used—which we selected because it is preferable for most
other genomic features. To further study the presence of L1
target site motifs near the de novo L1s at small scales along
with the potential bias from the L1 insertion assay (supple-
mentary note S2, Supplementary Material online), we also
analyzed the distribution of distances between the consensus
L1 target site motifs and de novo L1 elements, using both the
complete de novo L1 data set and a stringently filtered subset
(supplementary note S2, Supplementary Material online).
The results revealed that the majority of the de novo L1s
have at least one target site motif within a distance of 1 kb
for both cases. This observation was also supported by con-
trasting L1 target motifs between the de novo L1 data sets
and our L1-depleted control regions with IWTomics (supple-
mentary note S2, Supplementary Material online). The com-
parison revealed consistent signals of L1 target motifs before
and after filtering; in both cases the mean motif counts (per
1 kb window) in the de novo L1 regions were between 2 and

3, which does not indicate a complete depletion of L1 target
site motifs. Additional potential explanations for this coun-
terintuitive observation include 1) the suboptimal scale ana-
lyzed for L1 target motifs (they are 6-bp long, while we
analyzed scales starting from 1 kb); and 2) the lack of specif-
icity of the L1 endonuclease, as the majority of L1s were found
to insert into sites that differ from the exact consensus L1
target motif (TTAAAA) (Feng et al. 1996; Cost and Boeke
1998; Boissinot 2004; Zhao et al. 2019).

Interestingly, the separate effects of L1 target motifs and
GC content in the sFLRs comparing de novo L1 flanks versus
controls were not particularly strong, but increased drastically
when the two features were considered together in the mFLR
(table 1). We hypothesize that this might be due to GC
content correlating with many genomic features in the ge-
nome, including L1 target motifs (Kvikstad and Makova
2010). This was supported by our comparisons of L1 target
motif counts between L1 flanking regions and controls
matched for GC content. Specifically, we computed the quar-
tiles of mean GC content considering all regions simulta-
neously, and plotted L1 target counts in L1 regions versus
controls for each level of GC content (supplementary fig. S11,
Supplementary Material online). The results revealed more
prominent differences in L1 target motif counts between L1
flanks and control at GC-poor (0–25% and 25–50% quantiles)
than GC-rich (higher quantiles) regions (supplementary fig.
S11B–D, Supplementary Material online), suggesting interac-
tions between GC content and L1 target motifs.

Chromosomal Location
Location on the chromosome, which we characterized con-
sidering distance to the nearest centromere, distance to the
nearest telomere, and count of telomere hexamers, is also
associated with integration and fixation preferences of L1s.
Fixed L1s were generally located further from telomeres com-
pared with de novo L1s, suggesting that telomeric regions are
less tolerant of L1 fixation. However, telomere hexamers were
significantly underrepresented in de novo L1 flanks versus
controls (strong effect in sFLR, selected in mFLR), and in
the flanks of fixed versus de novo L1s (weaker effect in
sFLR, not selected in mFLR). This observation might be
explained by the negative impact of telomere hexamers on
L1 activities possibly due to the Telomere Position Effect,
according to which heterochromatin is formed and gene ex-
pression is repressed near the telomeres (Pedram et al. 2006;
Calado and Dumitriu 2013; Venkatesan et al. 2017).
Alternatively, this observation may be due to the difficulty
in mapping L1 sequences to regions close to telomeres and
enriched with hexamer repeats (Plohl et al. 2002; Treangen
and Salzberg 2011; Lee et al. 2014). Thus, these results should
be treated with caution. We also observed that human-
specific L1s are located closer to centromeres than de novo
L1s (fig. 5). Although this effect was weak (table 1), pericen-
tromeric regions have decreased GC content (Duret and
Arndt 2008) and experience relaxed selection (Horvath and
Slotte 2017), potentially explaining an enrichment of fixed,
human-specific L1s close to centromeres.
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Transposition of Other TEs
Investigating the distributions of five types of TEs—Alus,
MIRs, L2/L3 elements, DNA transposon, and LTR ele-
ments—revealed important associations between some
such elements and L1 transposition dynamics. Specifically,
Alus were overrepresented, whereas MIRs and L2s/L3s were
underrepresented, over 100 kb analyzed for de novo L1 flanks
versus controls (the underrepresentation of L2s/L3s was
“patchy”; fig. 4A). All three effects were strong in sFLRs, and
Alus and L2s/L3s were selected by the mFLR. The underrep-
resentation of L2/L3 elements in de novo L1 flanks may be
explained by 1) the fact that L2 and L3 elements have lost
mobility and are common in conserved genomic regions
(Silva et al. 2003; Meyers 2006), which lack de novo L1 inser-
tions (fig. 4A); and/or 2) an observation that regions enriched
with L2 elements, especially those involved in regulatory net-
works via miRNAs, may have nucleotide composition or DNA
structures repelling insertion of new L1 elements (Petri et al.
2019). This is in line with proposed differences between L1
and L2 elements in structural and functional characteristics,
as well as in host defense systems developed by the genome
(Rebollo et al. 2012; Lindi�c et al. 2013; McLaughLin et al. 2014).
The overrepresentation of Alus in the flanking regions of de
novo L1s can be related to the fact that fixed Alu elements are
frequently found in the GC-rich regions of the genome, which
might also be preferred by new L1 insertions (Soriano et al.
1983; Jurka 2004; Wagstaff et al. 2013) (fig. 4A). Also, such
enriched Alu signals near de novo L1s can in part be explained
by the dependency of Alu activity on the L1 transposition
machinery and the associated endonuclease cleavage sites
(Boeke 1997; Deininger 2011; Wimmer et al. 2011; Elbarbary
et al. 2016).

In the human-specific versus de novo L1 flanks compari-
son, Alus were globally underrepresented, and MIRs and LTRs
were under- and overrepresented, respectively, but in a more
“patchy” fashion. Alus had a very strong effect in sFLR, and
were selected by the mFLR. Higher coverage of LTR elements
in the flanks of human-specific versus de novo L1s is consis-
tent with the depletion of both L1 and LTR elements in gene-
rich regions, due to negative selection (Deininger and Batzer
2002; Medstrand et al. 2002). MIR-rich regions do not tolerate
L1 fixations likely due to the potential regulatory functions of
MIRs and their positive correlation with the presence of gene
enhancers (Matassi et al. 1998; Jjingo et al. 2014). The paucity
of Alus in human-specific L1 flanking regions could be
explained by their dearth in AT-rich genomic regions, which
are favored by L1 fixation (Wagstaff et al. 2012) (fig. 4B).

Replication and Recombination
Our results suggest that replication and recombination pro-
files have significant but weak associations with the insertion
and fixation preferences of L1 elements. We analyzed two
replication-associated features—replication timing profile
(Ryba et al. 2010) and replication origins (Besnard et al.
2012), and two recombination-associated features—recom-
bination rate (Kong et al. 2010) and recombination hotspots
(Myers et al. 2008). We found that early-replicating regions

were positively associated with L1 insertion, but with limited
effects (pseudo-R2 < 0.5% in sFLRs, both features selected by
the mFLR). At the same time, early-replicating regions, repli-
cation origins, and recombination hotspots were negative
predictors of L1 fixation; all three features had strong effects
according to sFLRs, but not selected by the mFLR.

Our results on the association between L1 integration and
early replication timing are consistent with the S-phase bias of
L1 transposition suggested by other studies (Mita et al. 2018;
Sultana et al. 2019). Genomic regions rich in early replicating
domains might allow earlier access to sites of less compact
chromosomal folding, which are exploited by new L1 integra-
tions (Ryba et al. 2010; Xie et al. 2013; Flasch et al. 2019;
Sultana et al. 2019). High density of replication origins might
facilitate this process. The negative association of L1 fixation
with early replication timing and replication origins might be
due to potential effects of replication on the deletion of
inserted elements (Yehuda et al. 2018). This is consistent
with a potential crosstalk between L1 insertion and other
activities and DNA replication, especially during cell division
(Ryba et al. 2010). In addition, different replicating domains
might not only influence the retrotransposition of L1s, but
also affect the DNA replication of L1 genomic sequences
(Koren et al. 2012; Zaratiegui 2017), which also suggests ad-
ditional contribution of the replication process to the L1 life
cycle. The negative association of L1 fixation with recombi-
nation hotspots might also be due to recombination effects
on L1 deletion (Boissinot et al. 2001; Song and Boissinot 2007;
Belancio et al. 2009; Bourgeois and Boissinot 2019), as well as
to the fact that human-specific L1 regions are located closer
to the centromere (fig. 5), where recombination rates are low
(Mahtani and Willard 1998; Myers et al. 2005; Croll et al.
2015).

Selection
Here, we focus on the associations of L1 integration and fix-
ation with most conserved elements, CpG islands, exons, and
introns—which all act as proxies for purifying selection in the
genome. Particularly informative for selection inference are
associations between these features and L1 fixation preferen-
ces, as gleaned from the comparison of human-specific versus
de novo L1 flanks. All four features considered were under-
represented across the whole 100-kb flanks studied (with
most conserved elements underrepresented more strongly
in the 615 kb surrounding the elements; fig. 4B). CpG islands
and exons were also selected in the mFLR. These results in-
dicate strong selection against fixation of L1 elements in these
functionally constrained parts of the genome (Bejerano et al.
2004; Asthana et al. 2005; Kines and Belancio 2012; Yang et al.
2014).

Integrative Models of L1 Transposition Dynamics
To summarize how different genomic features are correlated
with L1 transposition dynamics, we combined the results
from IWTomics and FLR analyses (figs. 4 and 5 and table 1)
and developed two integrative biological models relating the
local genomic landscape with L1 insertion and fixation
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preferences (fig. 6). In these models, the scale and the direc-
tion (enrichment vs. depletion) of the signal originate from
IWTomics results (fig. 4) and are depicted by the width and
positive versus negative location in the model schematics,
respectively. The strength of the signals originates from the
pseudo-R2 based on the sFLRs (left part of table 1) and is
depicted by the bars in the schematics (proportional to bar
height; fig. 6).

A Model of L1 Insertion (fig. 6A)
We found that de novo L1s preferentially integrate into
actively transcribed, hypomethylated, open-chromatin,
and early-replicating regions of the genome. These regions
are also enriched in G-quadruplex motifs and mononucle-
otide microsatellites, which can form non-B DNA (Sinden
2012). These signals are evident at the scale of a few kilo-
bases from the integration site. The potential underlying
mechanism is that the genomic regions with actively

transcribed genes usually have higher chromatin accessi-
bility, which facilitates the insertion of L1 elements. Also,
unstable non-B DNA might provide opportunities for L1
insertions. Because actively transcribed regions are usually
GC-rich (Eyre-Walker and Hurst 2001; Vinogradov 2003),
we also observed increased GC content and Alu content in
regions enriched for de novo L1 insertions. Alu elements,
particularly older ones, are usually enriched in GC-rich
regions (Smit 1999; Gu et al. 2000; Jurka et al. 2004;
Kvikstad and Makova 2010). In addition, early-replicating
domains and regions with higher transcriptional activities,
found to be associated in previous studies (Rivera-Mulia
et al. 2015; Fu et al. 2018). However, regions enriched with
old inactive TEs (ancient L2/L3 and MIR elements) are
usually GC-poor (Matassi et al. 1998; Medstrand et al.
2002), and most conserved elements as a rule are present
in nongenic (i.e. AT-rich) regions, explaining why they ap-
pear to be negative predictors over large regions in fig. 6A.

FIG. 6. Integrative models of L1 transposition dynamics based on IWTomics and sFLR results. (A) A model for insertion preferences. (B) A model for
fixation preferences. The horizontal black line represents the linear genome structure, with boundaries marking the 100-kb flanking region
centered at the L1 insertion site. Each rectangle represents a genomic feature. The placement (above or under the horizontal black line) of the
rectangle indicates the sign of a feature’s effect (positive or negative), whereas the location and width of the rectangle indicates the location and
scale of the effect within the 100-kb flanking region, respectively (based on IWTomics). The height of the rectangle indicates the strength of effect
(based on sFLR). Features not included due to unlocalized signals or negligible contributions are: gene expression, direct repeats, mirror repeats, di-,
tri-, and tetranucleotide microsatellites, LTRs, recombination hotspots, and five low-resolution features (insertion model); and direct repeats,
inverted repeats, Z DNA, and five low-resolution features (fixation model).

Human L1 Transposition Dynamics . doi:10.1093/molbev/msaa194 MBE

13

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

saa194/5877438 by  N
STL C

onsortium
 Adm

in 1 on 26 N
ovem

ber 2020



A Model of L1 Fixation (fig. 6B)
In contrast to L1 integration, L1 fixation occurs in genomic
regions depleted of exons, introns, CpG islands, gene expres-
sion, and most conserved elements (this is observed across
the 100-kb flanks considered in our analysis). This pattern
suggests strong effects of purifying selection acting against
fixing L1s in these functional (or putatively functional) regions
of the genome (Medstrand et al. 2002; Lowe et al. 2007;
Elbarbary et al. 2016). Because genes are usually GC-rich
and many of them are actively transcribed from DNA with
open chromatin, L1 fixation is negatively associated with GC
content, transcription activation histone marks, and other
predictors of open chromatin (e.g. DHS and Pol II sites),
and positively associated with repressive histone marks (again
with effects over the whole 100-kb region analyzed).
Therefore, we propose that L1 fixation tends to occur in
AT-rich regions with low gene content, low levels of tran-
scription activities, and closed chromatin structure, likely due
to the relaxed selection pressure in such regions.

Consequences of L1 Transposition on the Genomic
Landscape
Based on our results, the genomic landscape influences L1
transpositional activities and, in turn, fixed L1s modify the
genomic landscape surrounding them. For instance, we found
an enrichment in CpG methylation 61 kb from the insertion
site of human-specific L1s (fig. 6B). L1s themselves are prone
to DNA methylation (possibly as a genome-defense system to
control the expression and spread of the elements) (Yoder
et al. 1997; Cohen et al. 2011; Noshay et al. 2019), and meth-
ylation may spread to the neighboring region—potentially
altering the expression pattern of genes located nearby
(Elbarbary et al. 2016). This is consistent with suggestions
that L1s can fine-tune transcriptional activities via the
genome-wide inhibition of transcriptional elongation (Han
et al. 2004) and that L1s can affect gene structure, transcrip-
tional activities, and translation (Belancio et al. 2006; Chuong
et al. 2017).

Somatic L1 insertions have also been reported to modulate
local DNA methylation levels in the mouse genome by car-
rying CpG islands that can be subsequently hypermethylated
(Grandi et al. 2015). In contrast, an opposite effect was pre-
viously observed for germ-line L1 insertions, which often in-
troduce hypomethylated CpG islands and have a localized
influence on the neighboring CpG sites (Lees-Murdock et al.
2003; Rosser and An 2012; Grandi et al. 2015). These findings
might further explain the enriched CpG methylation close to
the insertion sites of human-specific L1s, which result from
germ-line insertions.

In addition, when transcribed as part of a larger transcript
context, LINEs and SINEs can also affect mRNA stability and
thus further influence the translation process (Boissinot et al.
2006; Elbarbary et al. 2016; Petri et al. 2019). We also detected
an enrichment in mononucleotide microsatellites 61 kb from
the insertion site of human-specific L1s (fig. 6B). L1 sequences
themselves are known to be hotbeds of AT-rich microsatel-
lites, which constitute the majority of mononucleotide

microsatellites (Kelkar et al. 2011), and it is possible that this
process “spills over” to the genomic regions in the vicinity of
fixed L1s.

Limitations of the Current Study and Future
Directions
Utilizing a comprehensive list of genomic features (the largest
list considered to date in this type of studies), we built mFLR
models that explain as much as�30% of the variability in L1
insertion and fixation behavior (table 1). This strong explan-
atory power allowed us to gain important insights, but we
should also ask what may be behind the substantial share of
variability that we did not explain. First, some genomic fea-
tures affecting L1 integration and fixation dynamics might still
be missing from our list. Additional features, once informa-
tion on them becomes available, should be incorporated in
future studies. Second, our mFLR models did not comprise
explicitly interactions between two or more features.
Although interactions between functional predictors can be
included in mFLR (Usset et al. 2016; Greven and Scheipl 2017),
coefficient estimation becomes more complex and interpre-
tation of the interaction terms is not straightforward. mFLRs
with interactions, too, may be leveraged in future studies.
Third, anticipated advances in statistical methods, particularly
in the domain of functional variable selection, are likely to
provide better models; an effective algorithm to select func-
tional predictors from a large pool will permit us to include all
available genomic features simultaneously and reduce the
need of preselecting features based on individual tests (see
Materials and Methods section).

Also, de novo L1 insertions included in our study were
harvested from a cell line experiment not reflecting germ-
line events, in contrast to the polymorphic and human-
specific elements. This caveat might influence some of our
findings regarding the influence of local genomic features on
TE integration, particularly the ones that are cell-type specific,
for example, DNA methylation and replication timing profiles
(Lees-Murdock et al. 2003; Ryba et al. 2010; Rosser and An
2012; Grandi et al. 2015).

Here, we studied integration preferences for de novo L1
insertions using engineered L1 sequences from kidney stem
cells (HEK-293T). This represents a useful model system, and
our results about how different genome characteristics influ-
ence L1 insertions have important implications for future
studies of somatic L1 transposition and its impact on human
health and disease. However, HEK-293 cells have previously
been reported to be aneuploid, with different levels of struc-
tural variation found in several lines, including the HEK-293T
line (Lin et al. 2014; Binz et al. 2019) we utilized here. Although
this may lead to copy number changes in some genomic
regions in the cell line we used, our conclusions are still robust
for several reasons. First, while capturing the L1 insertion
events, we retained only the unique L1 insertions in each
genomic region using the co-occurrence of barcode markers
and restriction sites as criteria for successful insertions (sup-
plementary fig. S1, Supplementary Material online and
Materials and Methods section). Second, our results on the
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chromosome-wide distribution of de novo L1 insertions
revealed a strong linear correlation between the number of
insertions and chromosomal size (supplementary fig. S3,
Supplementary Material online), suggesting minimal effects
of potential changes in copy number on target sites. Third, we
have contrasted the density of de novo L1 insertions between
“aneuploid hotspots” in HEK-293T cells obtained from the
literature (Lin et al. 2014; Binz et al. 2019) and other, randomly
selected genomic regions. No significant differences were
found (supplementary fig. S14, Supplementary Material on-
line), again suggesting a minimal impact of potential target
sites duplications on our L1 insertion assay. Fourth, we per-
formed an additional IWTomics analysis of de novo L1 inser-
tion hotspots, defined as multiple overlapping de novo L1
flanking regions (i.e. two, three, or more than three overlap-
ping regions). We observed increasingly stronger signals of
genomic features contributing positively to L1 insertions in
our model (such as DHS and H3K4me2) in regions where
close de novo L1 insertions were found (supplementary fig.
S13, Supplementary Material online), suggesting that multiple
insertion events were likely driven by local genomic landscape
features instead of by amplified regions in the genome of
HEK-293T cells.

Importantly, since cell lines might not represent the same
karyotype and genomic landscape for TE integration as reg-
ular cells, our findings should be validated in future large-scale
trio resequencing studies, when such large data sets become
available. L1 insertions are reported to be highly frequent in
somatic tissues, and can potentially play important roles in
developmental processes (Muotri et al. 2005; Kano et al. 2009)
and behavior learning (Baillie et al. 2011; Bedrosian et al.
2018). L1 activities can also assist in forming brain plasticity
in response to environmental stress via somatic variations in
the genome (Baillie et al. 2011; Bedrosian et al. 2018), suggest-
ing potential roles for L1s in the regulation of neurons.
Somatic L1 retrotransposition has also been found to occur
in different cancer types, including lung and colon cancers,
suggesting a potential role of somatic L1 insertions in carci-
nogenesis (Miki et al. 1992; Scott and Devine 2017).

Finally, we compared our findings with those of two recent
de novo L1 integration data sets generated in hESC (Flasch
et al. 2019) and HeLa (Sultana et al. 2019) cells (supplemen-
tary table S6, Supplementary Material online). Regardless of
the differences in experimental design, genomic scales ana-
lyzed, and statistical methods used, we still found many fea-
tures having similar effects on L1 insertion (supplementary
table S7, Supplementary Material online). For instance, active
histone marks and early replicating domains contributed pos-
itively to L1 integration (though with different strengths)
across all three studies. However, some other findings were
inconsistent among the studies (e.g. for DHS and H3K27me3;
supplementary table S7, Supplementary Material online).
These discrepancies were not due to different statistical
approaches, as we still observed them when we reran a sub-
stantial part of our IWTomics analyses on the data sets from
(Flasch et al. 2019; Sultana et al. 2019) (supplementary figs.
S16 and S17, Supplementary Material online) but might be
explained by differences in cell lines and genomic scales used.

Future studies applying the same experimental design and
analysis framework across different cell lines should be able to
pinpoint the causes of these inconsistencies with more
confidence.

Conclusions
We presented the first high-resolution, genome-wide analysis
of L1 transposition dynamics in an evolutionary framework.
We demonstrated that insertion and fixation preferences, and
thus the genomic distribution of L1s in the human genome,
are affected by the local genomic landscape. The use of FDA
statistical tools allowed us to shed light on the potential
mechanisms through which regional genomic characteristics
influence L1 transposition dynamics. Moreover, our results
suggest that L1 transpositional activities, in turn, re-shape
the genomic landscape over the course of evolution. This
study extends our understanding of L1 transposition dynam-
ics, provides insights into the structure and evolution of the
human genome, and illustrates how powerful FDA method-
ology can aid in extracting information from high-resolution
genomic data (Cremona et al. 2019). These tools could be
utilized in a variety of genomic studies in the future.

Materials and Methods

In Vivo L1 Insertion Experiment
The positions of de novo L1 insertions were retrieved from an
L1 integration experiment in HEK-293T cells according to the
following steps. First, vectors containing both a synthetic hu-
man L1 element (full-length synthetic ORFeus-Hs) (An et al.
2011) and Green Fluorescent Protein (GFP) were transfected
into cultured cells. The vectors were marked with two restric-
tion enzyme sites (MspI: CCGG and TaqI: TCGA) and 14
different 4- to 6-nucleotide barcodes, which enabled the iden-
tification of unique insertion events in the downstream anal-
ysis. The high genome-wide densities of the two restriction
sites minimized potential bias in detecting the insertion
events (supplementary fig. S18, Supplementary Material on-
line). Second, the successful de novo L1 integration events
were captured by the expression of GFP. Finally, the positions
of L1 insertions were revealed using inverse PCR followed by
Illumina sequencing (fig. 1).

Cell Transfection and Fluorescence-Activated Cell Sorting
The plasmid pld225 containing the L1 element was contrib-
uted by the lab of Jef Boeke (An et al. 2011). The plasmid DNA
was extracted using EndoFree Plasmid Maxi Kit (Qiagen) fol-
lowing the manufacturer’s protocol and then prepared for
cell transfection. The de novo retrotransposition of L1 was
performed in human embryonic kidney cell line HEK-293T,
which was maintained in Dulbecco’s Modified Eagle Media
(Gibco) supplemented with 10% fetal bovine serum, penicillin
(100 units/ml), and streptomycin (100 lg/ml). HEK-293T cells
were first seeded at 2�105 cells per well in six-well plates and
grown overnight. The next day, transfections were performed
with 1 lg plasmid and 2.5 ll transfection reagent (Fugene HD;
Roche) according to the manufacturer’s protocol. The day
after transfection, cells were treated with trypsin and
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transferred to 60-mm plates with complete medium contain-
ing puromycin at 1 lg/ml. After 3 days of puromycin selec-
tion, cells were washed in 1�phosphate-buffered saline and
sorted by fluorescence-activated cell sorting. The gating for
GFP positive cells was determined by analyzing cells trans-
fected with a puromycin-resistant but GFP-negative control
plasmid. A minimum of 500,000 cells were sorted for genomic
DNA extraction.

Inverse PCR and Illumina Sequencing
Genomic DNA was extracted using DNeasy blood and tissue
kit (Qiagen) following the manufacturer’s protocol. Each
DNA sample was divided into three 2-mg aliquots, each
digested by Msp I or Taq I individually (New England
Biolabs). Digested DNA was ligated overnight at 16 �C in di-
lute solution to encourage self-ligation. Following ligase inac-
tivation, the ligation pool was then concentrated with either
Microcon YM-100 or Amicon Ultra 10K columns (Millipore),
and the volume was adjusted to 30 ll with water (when
necessary). One microliter was used for inverse PCR with
primers (iPCR_F_fixORFeous: AATGATACGGCGACCGCCG
AGATCTACACAGCTCTGTAACCATTAGCTGCAATAAA
CAAGTTAAC; iPCR_R_fixORFeus: CAAGCAGAAGACGGC
ATACGAGATTCAAGTGTGACTGGAGTTCAGACGTGTGC)
that anneal at a complementary region of the pld225 plasmid
to amplify the genomic regions flanking L1 insertion loci (fig. 1
and supplementary fig. S1A, Supplementary Material online).
The adapter sequences (Adapter [P5] added on the forward
iPCR primer: AATGATACGGCGACCGCCGAGATCTACAC;
adapter [P7] added on the reverse iPCR primer: CAAGCA
GAAGACGGCATACGAGAT), which allow the PCR products
to be sequenced on the Illumina genome analyzer, were
added to the inverse PCR primers. The inverse PCR products
were then purified using the QIAquick PCR purification kit
(Qiagen) and diluted to 10-nM concentration. For each sam-
ple, the same amount of PCR product from digestion with
each restriction endonuclease was pooled and submitted for
Illumina MiSeq sequencing.

Sequencing Analysis of De Novo L1 Insertions
We estimated the insertion locus of each de novo L1 as the 30-
end of read 2 (fig. 1); read 2 should lead to a more precise
location than read 1, since it does not need to sequence the
entire poly-A tail to reach the insertion locus. In particular, we
first filtered the fastq reads by barcode and restriction sites
(i.e. we only retained reads with both barcode and at least one
of the restriction sites, which correspond to successful L1
insertion events), trimmed the 50 end of the retained reads
(keeping the two restriction sites as part of the reads, but not
the L1 element, fig. 1 and supplementary fig. S1,
Supplementary Material online), and separately stored barc-
odes and restriction sites. We then trimmed the poly-Ts at
the 30-end of the reads that reached the poly-A tail using
Sequence Content Trimmer on Galaxy (Afgan et al. 2018)
(parameters: window size 10; frequency threshold 0.89; min-
imum read length 15), and subsequently using PRINSEQ

0.20.4 (Schmieder and Edwards 2011) (parameters: minimum
tail length to trim poly-A/T at 30-end 4; minimum sequence
length in base pairs 15; set output data as FASTQ and Both).
Next, we aligned the processed reads to the hg19 reference
genome using BWA aligner (with default parameters), and
filtered aligned reads with the cut-off parameter q� 1 using
samtools and bedtools. Next, we retrieved the barcode and
restriction site information by matching the sequencing read
IDs, and annotated the strand information for all of the de
novo L1 insertions (supplementary fig. S1, Supplementary
Material online). Finally, we collapsed the insertions at the
same location by merging reads containing the same barcode
and with start (for the positive strand) or end (for the neg-
ative strand) positions at a distance less than 4 bp—since it is
very unlikely to obtain two very close insertions with the
same barcode. As a result, we retrieved 17,037 unique de
novo L1 insertions. In addition, we examined the potential
bias from genomic poly(A/T) sequences on de novo L1 de-
tection, which might create false positive signals or shift the
estimated insertion site, but did not find any significant effect
from the genomic poly(A/T) sequences (supplementary note
S3, Supplementary Material online).

L1 Data Sets
We first collected the 17,037 de novo L1s from the L1 inte-
gration experiment described above. Next, we collected 1,012
polymorphic L1s from a public data set cross-referenced from
five different studies (Ewing and Kazazian 2011), and we con-
verted their genomic coordinates from hg18 to hg19 using
the LiftOver utility (Casper et al. 2018). Finally, we obtained
1,205 human-specific L1s (annotated as L1HSs) from the
RepeatMasker (Smit et al. 2015) annotation of the hg19 ge-
nome, as available at the UCSC Genome Browser (Karolchik
et al. 2004). For each of these three L1 data sets, we only
considered elements on autosomes and chromosome X for
the subsequent analyses (supplementary table S1,
Supplementary Material online).

Analysis of L1 Distance Distribution
To investigate whether the genomic distribution of L1s is
random, we compared the distribution of distances between
L1 elements of the same type with a random expectation. We
also compared the distribution of distances between L1 ele-
ments of two different types with a random expectation. In
particular, for each of the three L1 data sets (de novo L1s,
polymorphic L1s, and human-specific L1s), we computed
distances between each element and the closest element of
the same type (on either strand, and either upstream or
downstream). We then compared the resulting distance dis-
tribution with the distance distribution obtained by ran-
domly shuffling L1 genomic positions (produced
considering a data set with the same number of elements
and element lengths, but randomized positions). In particular,
we performed a bootstrap Kolmogorov–Smirnov test (with
100 resamplings) to test for differences between the empiri-
cally observed and the randomized distance distributions,
using the “ks.boot” function from the R package

Chen et al. . doi:10.1093/molbev/msaa194 MBE

16

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

saa194/5877438 by  N
STL C

onsortium
 Adm

in 1 on 26 N
ovem

ber 2020



“Matching” (Sekhon 2011). The comparison was visualized
using cumulative distribution plots (supplementary fig.
S4A–C, Supplementary Material online) and quantile–quan-
tile plots (supplementary fig. S4D–F, Supplementary Material
online). In addition, to compare distance distributions across
the three L1 data sets, we considered a “normalized” cumu-
lative distribution of the distances between L1 elements.
Specifically, we first subsampled 900 elements from each L1
data set, and used these subsamples to compute the cumu-
lative distributions of the distances between L1 elements of
the same type. We then normalized these distributions by
subtracting the corresponding expected cumulative distribu-
tion, and plotted results based on 100 subsamples (fig. 2A).
We also analyzed the distances between L1 elements from
different data sets using the same procedure and plots (sup-
plementary fig. S5A–F, Supplementary Material online), and
compared the distance distributions across the three pairs of
data sets (de novo L1 and human-specific L1; de novo L1 and
polymorphic L1; polymorphic L1 and human-specific L1;
fig. 2B).

Generation of a Comprehensive Blacklist
With the wide use of functional genomics experiments such
as ChIP-seq and DNase-seq, it was observed that certain
regions of the genome frequently produce artifactual signals,
mainly due to the erroneous mapping of reads originating
from repetitive regions (ENCODE Project Consortium 2012;
Amemiya et al. 2019). These regions are frequently found at
certain types of sequences such as centromeres, telomeres,
and satellite repeats. Since in our genomic landscape analysis
we considered functional genomics features measured by
ChIP-seq and DNase-seq, it was essential to remove these
artifactual regions. First, we considered the ENCODE blacklist
for hg19 (ENCODE Project Consortium 2012; Amemiya et al.
2019), a set of problematic regions in the genome that show
artificially high signal in several ENCODE experiments, inde-
pendently of the cell line and experiment type. We then ex-
panded this blacklist to include problematic regions specific
to H1-human embryonic stem cell line (H1-hESC, the cell line
we are considering for most of the functional genomic experi-
ments in this study). In particular, we added to the blacklist
the genomic regions that showed extreme signal in the H1-
hESC ChIP-Seq control sample. The bam files of this control
experiment were retrieved from the ENCODE portal (ID:
ENCSR000AMI), and the two replicates were merged into a
single control file with samtools. We then employed two
approaches to identify regions with extreme signals. First,
we called peaks in the control file using MACS2 with default
parameters (Zhang et al. 2008; Feng et al. 2012). Second, we
screened the genome based on the strength of the control
ChIP-Seq signal using a script originally developed by Chris
Morrissey and Belinda Giardine from Ross Hardison’s Lab at
Penn State University (Morrissey 2013; Cheng et al. 2014). In
particular, we considered a 5,000-bp sliding window, and
blacklisted all regions with signal 4 standard deviations greater
than average, with at least 8-fold change in spikes. The two
approaches revealed 2,094 and 519 blacklisted regions, respec-
tively (supplementary table S3, Supplementary Material

online). Our comprehensive blacklist was obtained by merg-
ing the ENCODE blacklist with the genomic regions of ex-
treme H1-hESC ChIP-Seq control signals, and it contained 861
regions for a total size of 11.8 Mb (supplementary table S3,
Supplementary Material online).

Construction of L1 Flanking and Control Regions
Given the low quality of the sequencing data on sex chromo-
somes for several genomic features, only the L1 elements on
autosomes were considered when we constructed flanking
regions for the FDA workflow. This reduced our data sets to
16,322 de novo L1s, 954 polymorphic L1s, and 1,094 human-
specific L1s (supplementary table S1, Supplementary Material
online). We constructed the flanking regions of the 16,322
autosomal de novo L1 insertions by taking the 50-kb up-
stream and 50-kb downstream sequences centered at the
insertion sites. Overlaps between flanking regions might affect
subsequent analyses, assigning more weight to genomic
regions covered by multiple L1 flanks; hence we removed
part of the overlapping regions, to obtain a data set of non-
overlapping regions that maximized the number of regions
retained (for a pair of overlapping regions, we kept only the
first one; for a group of three overlapping windows we kept
the first one and the third one, if they did not overlap, etc.).
After filtering out genome assembly gaps and blacklisted
regions, we retained a total of 7,981 de novo L1 regions.
The 954 autosomal polymorphic L1s (Ewing and Kazazian
2011) are not annotated in the reference genome, hence
we used the sites of polymorphic L1 directly and constructed
100-kb flanking regions centered at these sites for each poly-
morphic L1. After removing overlapping windows, genome
assembly gaps, and blacklisted regions, 836 polymorphic L1
regions were retained. For the 1,094 autosomal human-
specific L1s (Karolchik et al. 2004; Smit et al. 2015), we first
merged the overlapping and adjacent elements and then
constructed the regions by flanking 50 kb upstream and
50 kb downstream of each element—the element sequences
were not included. This resulted in 834 nonoverlapping
human-specific 100-kb L1 flanking regions, after removing
genome assembly gaps and blacklisted regions (supplemen-
tary table S3, Supplementary Material online). In addition,
when constructing the flanking regions we annotated the
L1 elements strand information (whether they were inserted
on the positive or negative strand) whenever possible. The
strand was annotated for all 7,981 de novo L1s regions, but
only for 670 polymorphic L1 regions and 725 human-specific
L1 regions. This was due to the lack of information about
insertion directions for a subset of polymorphic L1s (Ewing
and Kazazian 2011) and to the merging of overlapping/adja-
cent human-specific L1s on opposite strands. We considered
the strand information in our FDA (see below).

To construct our controls, we partitioned the hg19 human
genome into 100-kb consecutive regions, and excluded those
that overlapped with genomic gaps (Kent et al. 2002) or
blacklisted regions (as described below). We then filtered
out regions overlapping with any of the three L1 100-kb
flanking region data sets. In addition, we filtered out regions
overlapping 100-kb regions flanking polymorphic L1s from
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dbRIP (Wang et al. 2006). These L1s were not included in our
polymorphic L1 data set because of their heterogeneity (some
of them are in the reference genome while some are not,
hence merging them with the Ewing and Kazazian’s data
set [Ewing and Kazazian 2011] might introduce bias). Yet
we excluded them and their flanks to obtain cleaner controls.
Finally, to minimize the “noise” from older L1 elements in the
genome, we filtered the control regions based on their cov-
erage of all referenced L1 elements in the hg19 genome as-
sembly (except for human-specific L1s since they were already
removed). Only control regions with less than 7% coverage by
(all referenced) L1 element were kept, leading to a final set of
1,034 “clean” control regions. The 7% threshold was chosen to
obtain a number of control regions of the same order of
magnitude as in each of the three L1 data sets.

We also considered the fact that some of the 100-kb flank-
ing regions from different L1 data sets (e.g. de novo L1s and
human-specific L1s) might overlap, making the data sets not
completely independent. We performed IWTomics analysis
(see “Interval-Wise Testing with IWTomics” section) both on
the complete data sets and after removing all the overlapping
regions among different data sets (this left us with 7,517 de
novo L1 regions, 332 polymorphic L1 regions, and 357
human-specific L1 regions). Since results were similar (not
shown), we kept the overlapping regions among different
L1 data sets in our analyses, to maximize the number of
considered L1s and thus our statistical power.

Extraction of Genomic Landscape Features
We extracted genomic features in the flanking regions of de
novo L1s, polymorphic L1s, human-specific L1s, and in control
regions. A total of 49 features were collected from various
sources (table 1), among which 44 high-resolution features
measured at 1-kb resolution over the 100-kb regions, and five
low-resolution features (telomere hexamers, distance to the
telomere, distance to the centromere, replication timing, and
recombination rate) measured at 100-kb resolution, provid-
ing a single measurement per region.

All features obtained from ChIP-Seq experiments (histone
modifications, DNase hypersensitive sites, and CTCF motifs)
were measured as “signals,” that is as the average number of
reads aligned in each 1-kb window. For the features measured
as “coverage” (table 1), we computed the proportion of the
window covered by the feature using bedtools 2.25.0
(Quinlan 2014). For the features measured as “weighted
averages,” the extraction was performed on the Galaxy plat-
form, using the function “Assign Weighted Average Values”
(Goecks et al. 2010; Afgan et al. 2018). The extraction of
“count” features was performed via bedtools 2.25.0.
(Quinlan 2014) and the Galaxy platform (Afgan et al. 2018).
While extracting the high-resolution genomic features in the
L1 flanking regions, we also considered strand information by
reversing the order of 1-kb windows when the element was
on the negative strand.

For the high-resolution features, we performed a clustering
based on Spearman’s correlation. In detail, we considered all
1-kb windows corresponding to L1 flanking regions and con-
trol regions and performed a hierarchical clustering using 1-

jSpearman’s correlationj as dissimilarity and complete linkage
(supplementary fig. S6, Supplementary Material online). At a
cutoff of 0.2 (corresponding to a Spearman’s correlation of
60.8), we identified two tight clusters of features. One com-
prised three expression profiles (testis expression, gene ex-
pression, transcript expression), and the other exon-related
(exon coverage and exon expression). We selected only one
representative feature for each cluster, and thus excluded
three features (testis expression, transcript expression, and
exon expression) to reduce multicollinearity issues in the mul-
tiple regression analysis (see below).

Interval-Wise Testing with IWTomics
To compare the profiles described by high-resolution features
along the 100-kb flanking regions of different L1s, as well as
between L1 flanks and control regions, we employed the
IWTomics (Pini and Vantini 2016; Cremona et al. 2018).
IWTomics is a nonparametric inference procedure that tests
for differences between the distributions of two sets of curves.
In particular, IWTomics tests the null hypothesis that the
distributions of the two sets of curves are equal against the
alternative hypothesis that they differ. Importantly, if a signif-
icant difference is detected, it provides also the locations (i.e.
the 1-kb windows) where such difference is observed. This is
achieved by first computing pointwise P values (i.e. a P value
for each 1-kb window), and then by adjusting them for mul-
tiple comparison, taking into consideration the ordered na-
ture of the measurements (i.e. of the 100 1-kb windows). In
addition, the extended version of the test that we
employed—implemented in the R package IWTomics
(Cremona et al. 2018)—also provides the scales (i.e. lengths
of the subintervals) at which significant differences unfold
(see supplementary fig. S7, Supplementary Material online
for an example of IWTomics complete output). The test is
fully nonparametric and based on permutations, so it requires
no assumption on the curve distributions; this characteristic
makes it particularly advantageous for testing the heteroge-
neous genomics features used in our study.

We employed IWTomics to analyze each of the 41 high-
resolution genomic features measured in contiguous 1-kb
windows along the 100-kb flanks of different groups (de
novo L1s, polymorphic L1s, human-specific L1s), and along
the 100-kb control regions. We considered six pairwise com-
parisons: de novo L1 versus control, polymorphic L1 versus
control, human-specific L1 versus control, polymorphic L1
versus de novo L1, human-specific L1 versus de novo L1,
and polymorphic L1 versus human-specific L1 (fig. 4 and sup-
plementary fig. S8, Supplementary Material online).
Specifically, each curve was defined in the interval [�50 kb,
50 kb], where 0 represents the L1 or the center of a control
region, with values over a grid of 100 points corresponding to
the 100 1-kb windows where the genomic features were mea-
sured. To denoise and turn these discrete measurements into
functional data, we slightly smoothed each curve using
Nadaraya–Watson kernel smoothing with Gaussian kernel
and bandwidth ¼ 2. We used a higher level of smoothing
(bandwidth ¼ 3) for CpG islands, since the sparsity and un-
even distribution of this feature induced massive zero-
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inflation (less than 10% of the 1-kb windows had nonzero
original measurements). Smoothing was performed via the
smooth function in the IWTomics package. All curves corre-
sponding to the same feature and to regions of the same type
were then aligned over their [�50 kb, 50 kb] domain, and the
four groups of curves were treated as samples from four un-
derlying stochastic functions, each with its distribution. For
each genomic feature and each of six pairwise comparison, we
tested the null hypothesis that the two stochastic functions
have the same distribution, against the alternative hypothesis
that their distributions differ. We tested all possible scales,
from the 1-kb window to the entire 100-kb region, detecting
both the scales and the locations at which the distributions
differ. We employed IWTomics with three different test sta-
tistics—mean difference, median difference, and multiquan-
tile difference (the sum of the 5th, 25th, 50th, 75th, and 95th
quantile differences)— to focus on different characteristics of
the distributions. The results with mean differences captured
group differentiation quite efficiently, and were thus used for
further analysis (multiquantile differences produced similar
results, whereas median differences detected less differentia-
tion). IWTomics’ empirical P values were computed using
10,000 random permutations. The five low-resolution fea-
tures were analyzed considering the same six pairwise com-
parisons and employing the univariate version of IWTomics,
where one single value is considered for each 100-kb region
(fig. 5).

Since the de novo L1 data set was substantially larger than
the polymorphic L1, human-specific L1, and control data sets,
we randomly subsampled 1,000 de novo L1 regions to achieve
a comparable sample size across all groups analyzed.
IWTomics tests involving de novo L1s were run ten times,
using 10 independent random subsamples of 1,000 de novo
L1 regions. The ten runs produced similar results (e.g. signif-
icance, location, and scale; data not shown) which we sum-
marized using pointwise medians of the adjusted P value
curves (fig. 4 and supplementary figs. S7 and S8,
Supplementary Material online; pointwise medians were
computed for each comparison and each possible adjust-
ment scale, from the 1-kb window to the entire 100-kb
region).

Single Functional Logistic Regression Analysis
For genomic features that showed significant differences in
some of the IWTomics comparisons, we quantified individual
effects using sFLR models. For each of the six pairwise com-
parisons (de novo L1 vs. control, polymorphic L1 vs. control,
human-specific L1 vs. control, polymorphic L1 vs. de novo L1,
human-specific L1 vs. de novo L1, and polymorphic L1 vs.
human-specific L1), we identified significant features (accord-
ing to IWTomics, at any location and scale), and for each
significant feature we fitted a sFLR with the two groups as
binary response and the feature as predictor. For example, in
the comparison between de novo L1 and control, we fitted
single logistic regression models on each of the 33 genomics
features (31 high-resolution features and two low-resolution

features) identified by IWTomics in the same comparison,
using as response the binary variable denoting de novo L1
flanking regions as Y ¼ 1 and control regions as Y ¼ 0. Prior
to fitting the sFLRs, we examined the distribution of each
genomic feature (considering all 1-kb windows for high-
resolution features, and all 100-kb regions for low-resolution
features) and performed a transformation by taking a shifted
logarithm if the distribution was skewed. In detail, we com-
puted the natural logarithm after adding a positive shift pa-
rameter s, that is we used the transformation log xþ sð Þ, and
we selected s � 1; 10�1; . . . ; 10�10jgf g to maximize the P
values of the Shapiro–Wilk normality test on the transformed
data in all groups (except for replication timing, that had both
positive and negative values, where we considered
s � 2; 4; . . . ; 22jgf g). Each genomic feature was then in-
cluded in a sFLR as either functional or scalar predictor [in-
dicated as x tð Þ and x in the following equations,
respectively]—with the model reducing to an ordinary single
logistic regression in the latter case. In symbols, we fitted the
models

logit
�

E½YjxðtÞ�
�
¼ ln

P

1� P

� �
¼ b0 þ

Ð 50

�50 bðtÞxðtÞdt

logitðE½Yjx�Þ ¼ ln
P

1� P

� �
¼ b0 þ bx

for functional and scalar predictors, respectively, where P
represents the probability of being in the group denoted by
Y ¼ 1 conditionally to the observed predictor. A high-
resolution feature was treated as a functional predictor
in a given comparison if it showed significant, localized
differences in IWTomics results and in pointwise boxplots.
In contrast, a high-resolution feature was considered as a
scalar predictor in a given comparison if IWTomics results
suggested a significant but nonlocalized (i.e. global) differ-
ence across the entire 100-kb interval, and pointwise box-
plots showed flat signals. In this case, the high-resolution
feature was summarized by computing its average over the
100 1-kb measurements in each 100-kb region. The five
low-resolution features (recombination rate, replication
timing, distance from the telomere, distance from the cen-
tromere, and telomere hexamers), when significant, were
also treated as scalar predictors. The R function glm was
employed to fit the models for scalar predictors, using the
binomial family and the logit link function. The sFLR for
functional predictors were fitted with the function fre-
gre.glm from the R package fda.usc (Febrero Bande and
Oviedo de la Fuente 2012), using again the binomial family
and the logit link function. A quadratic B-spline basis (or-
der 3) with six equispaced breaks was employed for repre-
senting both b tð Þ and x tð Þ (we used the function
create.bspline.basis from the R package fda).

For each sFLR model (in each comparison), we measured
the discriminatory strength of the predictor with the pseudo-
R2, which indicates the proportion of Deviance Explained by
the model, that is with
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DE ¼ R2
psuedo ¼

Dnull � Dmodel

Dnull
;

where Dnull is the null deviance and Dmodel is the model re-
sidual deviance.

In comparisons involving de novo L1s, also the sFLR anal-
ysis was performed ten times—using the same ten random
subsamples of de novo L1 flanking regions generated for the
IWTomics analysis. Again, results from the ten random sub-
samples revealed similar signals (pseudo-R2, significance, beta
coefficients, etc.). We then compared the pseudo-R2 values
for each predictor across all 10 random subsamples and se-
lected the subsample (random 1) with the least extreme
values for downstream analyses (supplementary fig. S10,
Supplementary Material online).

Multiple Functional Logistic Regression Analysis
For each of the six pairwise comparisons (de novo L1 vs.
control, polymorphic L1 vs. control, human-specific L1 vs.
control, polymorphic L1 vs. de novo L1, human-specific L1
vs. de novo L1, and polymorphic L1 vs. human-specific L1), we
employed a mFLR model to quantify the joint effects of dif-
ferent genomic landscape features on the insertion and fixa-
tion preferences of the L1 elements. Similarly to what was
done in the above sFLR analysis, we considered the genomic
features that showed significant differences in some of the
IWTomics comparisons, and we included each of them in the
mFLR model either as a functional or as a scalar predictor
[indicated as xj tð Þ and xj in the following equations, respec-
tively]. If a feature showed a skewed distribution, we trans-
formed it with a shifted logarithm in the same way we did for
sFLRs (see details in previous Subsection). As response, we
used a binary indicator for the two types of regions being
compared (e.g. in the comparison between de novo L1 and
control we indicated de novo regions with Y ¼ 1 and control
regions with Y ¼ 0). In symbols, for each comparison we
fitted the model:

login
�

E½Yjx1; . . . ; xr; xrþ1ðtÞ; . . . ; xrþsðtÞ�
�

¼ ln
P

1� P

� �

¼ b0 þ
Xr

j¼1

bjxj þ
Xrþs

j¼rþ1

ð50

�50

bjðtÞxjðtÞdt;

where x1; . . . ; xr are the r scalar predictors, xrþ1 tð Þ; . . . ; xrþs

tð Þ are the s functional predictors, and P represents the prob-
ability of being in the group denoted by Y ¼ 1 conditionally
to the observed predictors.

Even omitting features that were nonsignificant in the
IWTomics analysis, and reducing to scalar predictors high-
resolution features that showed significant but flat signals,
each mFLR model included several predictors. For example,
the mFLR model to compare de novo L1 and control in-
cluded 13 scalar and 20 functional predictors. To reduce
the complexity of the mFLR models and retain only rele-
vant predictors (i.e. only those genomic features that are
useful in differentiating among the two compared groups),

we employed a variable selection method for generalized
functional regression models based on group lasso (Matsui
2014). In particular, we standardized each predictor and
expressed each of the functional predictors xj tð Þ via a qua-
dratic B-spline basis expansion (order 3) with six equi-
spaced breaks (we used the function create.bspline.basis
from the R package fda):

xjðtÞ ¼
X6

k¼1

wj;k/kðtÞ ¼ wT
j /ðtÞ:

The same basis was employed for representing each coef-
ficient curve bj tð Þ, obtaining:

bjðtÞ ¼
X6

k¼1

bj;k/kðtÞ ¼ bT
j /ðtÞ:

The mFLR model could therefore be rewritten as:

logit
�

E½Yjx1; . . . ; xr; xrþ1ðtÞ; . . . ; xrþsðtÞ�
�

¼ ln
P

1� P

� �
¼ b0 þ

Xr

j¼1

bjxj þ
Xrþs

j¼rþ1

bT
j J/wj;

where

J/ ¼
ð50

�50

/ðtÞ/T
j ðtÞdt

is the cross-product matrix of the B-spline basis. The vector of
parameters

b ¼ b0; b1; . . . ; br; b
T
rþ1; . . . ; bT

rþs

� �T

was then estimated using the group lasso penalty for logistic
regression (Yuan and Lin 2006; Meier et al. 2008), treating the
parameters corresponding to the expansion of the same pre-
dictor as a group. In symbols, the vector of parameters was
estimated by minimizing the penalized log-likelihood
function

lk

�
bÞ ¼ �l

�
bÞ þ kðjb0j þ

Xr

j¼1

jbjj þ
Xrþs

j¼rþ1

ffiffiffi
6
p
kbjkÞ;

where l bð Þ is the log-likelihood function, k � k indicates the
Euclidean norm, and k is a regularization parameter. This
minimization was performed using an R in-house script based
on Matsui’s code (Matsui 2014). The regularization parameter
k was selected using the BIC (see supplementary fig. S12,
Supplementary Material online).

To conclude, for each comparison we fitted a final mFLR
comprising only the variables selected by the group lasso. Also
here, we employed the function fregre.glm from the R package
fda.usc (Febrero Bande and Oviedo de la Fuente 2012), with
binomial family, logit link function and a quadratic B-spline
basis (order 3) with six equispaced breaks for representing
eachbj tð Þ and xj tð Þ (we used again the function create.bspli-
ne.basis from the R package fda).
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We measured the total discriminatory power of each final
mFLR model with the total pseudo-R2, which corresponds to
the proportion of Deviance Explained by the model:

DE ¼ R2
psuedo ¼

Dnull � Dmodel

Dnull
;

where Dnull is the null deviance and Dmodel is the model’s
residual deviance. In addition, we measured the contribution
of each individual feature to the final mFLR model with the
RCDE:

RCDE ¼ Dnull � Dmodelð Þ � Dnull � Dred modelð Þ
Dnull � Dmodelð Þ ;

where Dnull is the null deviance, Dmodel is the model’s residual
deviance and Dred model is the residual deviance of a reduced
model obtained by removing the predictor whose contribu-
tion is being measured.

Data and Code Availability
We have set up a github repository (https://github.com/
makovalab-psu/L1_Project; last accessed August 26, 2020)
and shared the chromosomal coordinates of de novo, poly-
morphic, and human-specific L1s analyzed in this study
(https://github.com/makovalab-psu/L1_Project/tree/master/
Datasets; last accessed August 26, 2020). The repository also
contains the computational pipelines and code, along with
the corresponding intermediate files (.RData) used to gener-
ate the results. The raw sequencing reads from the de novo L1
insertion experiment were uploaded to the Short Read
Archive (SRA) under the accession number PRJNA640178.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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